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Introduction

Genetic instability and rearrangements, including gene amplification, is a hallmark of many
cancers. It would be desirable to prevent gene amplification, thereby moderating the aggressive
growth of breast cancer cells. The problem is that no one knows what triggers gene amplification. Our
current research in a model system suggests that the trigger may be a transcription factor such as the
receptor for the steroid hormone estrogen. The research proposed here describes some experiments
to begin to test this idea. Cancer is believed to occur after a build-up of somatic mutations or other
genomic changes. We wish to ask if a genomic change (genetic or epigenetic) might produce novel
binding site(s) for the estrogen receptor (ER) near a replication origin to cause re-replication, resulting
in amplification. In order to address this question, as a first step we need to map all origins of
replication in the human (breast cancer) genome --- which is the subject of this DOD-funded grant.
The purpose and goal of these experiments is to be able to see if correlations exist between origins
that re-replicate (leading to DNA amplification) in breast cancer cells and sites of estrogen receptor
binding. The scope of our research is summarized by the three Specific Aims: (1) Map replication
origins in the human genome; (2) Comparison of replication origin maps between breast cancer (ER+,
ER-) and normal breast cells; (3) Correlation of origin map data with sites of (a) DNA amplification
and (b) estrogen receptor binding. The results from the proposed experiments will serve as the
foundation for comparable experiments in surgically derived breast cancer tissue. These experiments
are beyond the time frame of this grant, but we are already stockpiling tissue samples for these future
experiments. Our proposed study could provide a new paradigm for hormonal induction of breast
cancer via gene amplification, leading to new methods of diagnosis and treatment.

Body: Progress Report (year one)

As described in the DOD funded parent grant, to test our hypothesis we need to map origins of
DNA replication in the genome and ask which of these coincide with sites of DNA amplification and
with ER binding sites. In the parent grant we proposed to identify potential replication origins by
mapping ORC binding sites. However, ORC can also bind to silent origins. We propose to refine this
strategy by using newly synthesized (nascent) DNA for direct mapping of all active replication origins
in the genome. These data will then be compared to sites of DNA amplification and sites of ER
binding to see if a correlation exists.

Task (1) Map replication origins in the human genome. Develop methodology using MCF-7 breast
cancer cells to derive a genomic map of replication origins by Helicos sequencing of short nascent
strands. To date, replication origins have only been mapped in 1% of the human genome (ENCODE).
Our results would be the first replication origin map for the entire human genome.

Subtask (1a) (months 1-6) — preparation of short nascent DNA from MCF-7 cells.

We have completed subtask (1a):
The Brodsky lab grew MCF-7 cells to mid-log stage and gave them to the Gerbi lab (postdoc Michael
Foulk) for DNA isolation. The nascent strand sequencing work flow is as follows:

Nascent-strand-Seq Work Flow

e Prepare genomic DNA from asynchronous MCF-7 cells with DNAzol (~30% in S-phase)
e Purify Replicative Intermediate (RI) DNA on BND-cellulose (100 ug input)

e Phosphorylate ends with T4-polynucleotide kinase

e Enrich for Nascent Strands by digesting with lambda-exonuclease (A-exonuclease; Lexo)




e Size select for 1 kb-2 kb nascent strands on low melting point agarose gel to eliminate Okazaki
fragments

e Test enrichment of the MYC origin of replication by Real-Time PCR

e Subject nascent strands to fragmentation followed by making them double stranded with
random primers and Klenow

e Standard library preparation for lllumina sequencing (200-500bp fragments)

e Sequence library on the lllumina GAllx platform (pilot experiment) or High-Seq (subsequent
experiments) using 42 bp single end reads

e Filter and align reads to the human genome (build hg18) and call peaks (using genomic input
DNA as normalization control)

Several labs are now using the methodology we developed for nascent strand sequencing
(NS-Seq) whose basis resides in the use of A-exonuclease to enrich nascent strands coupled with
size selection. Our NS-Seq protocol is based on our earlier report (Gerbi and Bielinsky, 1997;
Bielinsky and Gerbi, 1998) that nascent DNA is resistant to lambda-exonuclease digestion because of
the presence of a 5° RNA primer. This allows the parental DNA to be digested while the nascent DNA
is untouched. The nascent strands were size selected on gels for 1-2 kb, which gave greater origin
enrichment than a 0.5-1 kb fraction that may have Okazaki fragment contamination (Figure 1). Using
the c-Myc origin to assess for enrichment, the average of the several preparations used for
sequencing had 54-fold enrichment of nascent strands (Figure 1). Interestingly, in assessing this
enrichment at the c-Myc origin, we discovered that the preferred origin resided in the second exon of
the gene while it was previously determined to reside in the promoter of the gene (in HelLa cells: Tao
et al., 2000) (Figure 1). This observation was confirmed in our NS-Seq data, suggesting plasticity of
origin usage at the c-Myc gene in different cell types.

We hope to write an article about the validation of the NS-Seq method and also a Methods
article with step by step details of this protocol. The latter will also include a discussion of the
computational methods for analysis of the results.

Subtask (1b) (months 7-8) — sequencing and analysis of results to map origins in the genome.

We are close to completion for subtask (1b):

We had proposed that the short nascent DNA preparation would be submitted to the Dana
Farber Cancer Institute DNA sequencing facility. They would add poly-A tails to the DNA molecules
and carry out Helicos sequencing. They would send us the sequence data which would be analyzed
by co-P.l. Ben Raphael to map all active replication origins in the MCF-7 breast cancer genome.

We did one run on the Helicos machine, but there were many errors from the machine and the
company has now gone out of business. Therefore, we switched to using the lllumina GAIIX and
more recently lllumina Hi-Seq as the platform for sequencing nascent strands. We have obtained the
lllumina GAIIX data, have analyzed it, and presented posters on the results at the DOD Era of Hope
meeting and the Cold Spring Harbor DNA Replication meetings this summer/earlyfall. Figures from
the posters and also the abstracts are attached. The samples have been submitted for lllumina Hi-
Seq. The new results will confirm and extend our earlier data from the lllumina GAIIX machine.

Graduate student John Urban identified 53,914 origins in the MCF-7 genome, with a median
width of 1.5 kb using the methodology as follows:

We used BEDTools (Quinlan et al., 2010) and features of the genomic analysis of ChIP-Seq
data (Euskirchen et al., 2007) for analysis of our data on DNA replication originas in the human
genome. 11,805,186 reads of 42 bp were mapped to human genome build hg18 with Bowtie
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(Langmead et al, 2009; Langmead 2010). Some of the origins called at loci known to have origin
activity are shown via snapshots of the IGV browser. Read coverage and the individual reads were
tabulated. IGV tools (Robinson et al, 2011) was used to approximate the fragment coverage (from
which single end sequencing reads came) by extending reads to the average fragment length of 350
bp in the direction of the read. Using the Bowtie-mapped reads, MACS (Zhang et al, 2008; Feng et al.
2011) was used to call peaks (called 53,914) by shifting all reads 175 bp in the direction of the read to
approximate the center of the average-sized 350 bp fragments, then using the Poisson distribution to
call pile-ups enriched over the genomic background coverage with p-value < 0.00001 (--nomodel and
--nolambda specified). The breadth of the peak and the summit (the bp/point with highest coverage)
were tabulated. The summit is our current approximation for the preferred start site (transition point)
of DNA replication for each replication origin in the genome. Figure 2 presents the results of the
statistical analysis of mapping replication origins in the MCF-7 breast cancer genome.

Inter-Origin distances were calculated as those distances between all potential (or most)
origins used in a population of MCF-7 cells (Figure 3). The maximum distances in our set may be
real, but also may be due to weak origins within that space, due to deletions/rearrangements in the
cancer genome, or other. The median and mean peak widths both reflect the size of the nascent
strands we selected.

The data on the reads for some known origins is presented in Figure 4. Many known
replication origins were present in our data set including c-Myc (Figure 4a), DBF4 (Figure 4b), DHFR
(Figure 4c), B-Globin (Figure 4d), RPE (Figure 4e), as well as Lamin B2, and Glucose-6-Phosphate
Dehydrogenase. There are varying degrees of overlap between our dataset and those of others
(Cadoret et al., 2008; Karnani et al.,, 2010.; Mesner et al. 2011; Martin et al. 2011 — also see
Valenzuela et al. 2011), but surprisingly the overlap is less than 40% at best. We did a variety of
comparisons between the replication origins reported between each group (Figure 5). The Martin and
Gerbi origins sets were both pared down to just those origins that lie in the 44 pilot ENCODE regions
so that these sets may be directly compared to Cadoret et al. (2008), Karnani et al., and Mesner et al.
sets. We took off excess length from each side of the Mesner peaks (assuming origin is centered) to
make the relatively large number of overlapped origins (135) more than expectation by random
chance. The origin sets of Martin et al (2011), Cadoret et al. and Mesner et al. (2011) are represented
in our set by more than random chance, but Karnani’s is not. Our comparisons have been
summarized as Venn diagram representations of the named set accompanied by a pie chart that
represents the named set by breaking it up into degree of overlap of the origins (Figure 5) for the
current Gerbi ENCODE set (Figure 5a), the Martin ENCODE set (Figure 5b), the Cadoret set
(Figure 5¢), and the Mesner set (Figure 5d). We calculated the statistical significance for the overlap
in our data set with the data sets of others for replication origins in the human genome (Figure 6);
Martin’s, Cadoret’s, and Mesner’s sets are represented in our set by more than random chance, but
Karnani’s is not.

Also, we constructed a graph representation of pair-wise direct overlaps for the Gerbi set, the
Martin set (Aladjem), the Cadoret set (Prioleau), and the Mesner set (Hamlin) where nodes are Sets
and weights and directed edges of same color represent how many origins in the set of that color
overlap an origin in the set being pointed to (Figure 7).

Three of the reports (Cadoret et al., 2008; Karnani et al., 2010.; Mesner et al. 2011) were
based on using ENCODE (1% of the human genome) for HelLa cells, so finding only a small amount
of overlap could be due to their use of a different cell line than that used by our lab. However, the
Martin et al. (2011) report also used MCF-7 cells for NS-Seq of the entire genome and we are
puzzled that the agreement was not better between their dataset and ours. They used smaller
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nascent strands than us and we suspect that may have led to Okazaki fragment contamination in
their samples. Indeed, their nascent strand enrichment was less than ours and not even reported in
their paper nor were their results validated in their paper. These issues will be dealt with in the
discussion of our paper that will be prepared for submission in the coming year. Also, we are
collaborating with David Gilbert (University of Florida — Tallahassee) to determine the replication foci
higher order structure in the nucleus by chromosome capture methodology and this would also be
part of our publication.

To sum up, we are basically on schedule with our experiments, despite the change from the
Helicos to the lllumina platform.

Task (2) Comparison of replication origin maps between breast cancer (ER+, ER-) and normal
breast cells. These results would indicate if replication origin usage changes between normal and
breast cancer cells, and if it varies between ER positive and ER negative breast cancer cells.

We are nearing completion of subtask (2a) to map replication origins in an ER+ breast cancer
cell line --- namely MCF-7 (see Task (1). Due to the additional experiments of NS-Seq method
validation and collaborative experiments on chromosome capture that were not in the original grant
application, the experiments in subtask (2b) to map replication origins in ER- breast cancer cells (e.g.,
MDAMB231 cells, SKBR3 cells) will be deferred to year two of this grant. Also in year two we will
carry out subtask (2c) to map replication origins in normal breast cells (MCF-10A) as in the timeline of
the grant application. The similarities and differences in replication origin maps for ER+ and ER-
breast cancer cell genomes and comparison to the origin map for the normal breast cell genome will
address whether replication origins differ in different cell types, especially comparing breast cancer
cells to normal breast cells, and comparing ER+ to ER- breast cancer cells.

Task (3) Correlation of origin map data with sites of (a) DNA amplification and (b) estrogen
receptor binding. These data will support or refute the hypothesis that ER may bind next to the
replication machinery and induce DNA amplification.

These results that are scheduled for year two will support or refute the hypothesis that ER may
bind next to the replication machinery and induce DNA amplification. Co-Pl Ben Raphael working
together with graduate student John Urban (who has been heavily involved in the computational
analysis thus far and presented this work at the Cold Spring Harbor DNA Replication meeting) will
correlate origin locations with sites of (a) DNA amplification and (b) estrogen receptor binding as
described in subtask (3a) of the grant for year two. We will compare the origin map data to data that
already exists on sites of DNA amplification (to identify amplification origins) as well as confirm and
expand these data using our own data on the number of reads from sequencing bulk genomic DNA
from the various cell lines we are using. This information will, in turn, be compared to existing data on
sites of ER binding. It may prove necessary to undertake some ChIP (chromatin immunoprecipitation)
experiments for validation of ER binding, though not proposed in the original grant application. These
data will indicate if a correlation exists between ER binding and origins that re-replicate (amplify),
thereby testing our hypothesis.

In the remaining month or two of year two (according to the grant timeline) we hope to engage
in pilot runs to map replication origins in surgically derived breast tissue (subtask (3b)).We have
already begun to stockpile surgically derived breast cancer tissue, provided to us a residual, de-
identified tissue from surgeons Theresa Graves and Maureen Chung and pathologist Shamial
Mangray, all from Rhode Island Hospital which is affiliated with the Brown University Medical School.
During months 23-24, we will use samples of this tissue to refine the methodology we developed in
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task (1) for use on surgical specimens. Pilot runs will be initiated in ER + human breast cancer tissue
to map replication origins and sites of DNA amplification to compare to matched normal breast tissue
from the same patient. These data will be expanded in future studies to reveal if novel origins are
used for re-replication and if they correlate with ER binding sites adjacent to them. This information
will have clinical importance.

Anticipated papers we hope to publish are:

(1) Methods for Nascent Strand Sequencing (NS-Seq) — molecular biology bench work and
computational analysis.

(2) Validation of the Nascent Strand Sequencing method

(3) Identification of replication origins in the MCF-7 human breast cancer genome.

(4) Correlation of replication origins, sites of DNA amplification and estrogen receptor binding

Key Research Accomplishments
e Development of the method of Nascent Strand-Seq (NS-Seq) to map replication origins in the
genome - We have developed this method. We plan to also apply it to the yeast genome for
validation of the method.

e Application of NS-Seq to map replication origins in the MCF-7 breast cancer genome - We
have obtained results of NS-Seq to map replication origins in the MCF-7 genome using the
lllumina platform).

e Validation of the NS-Seq results by finding known replication origins in our data set - We have
validated NS-Seq on known origins, including Myc, DBF4, DHFR, B-Globin, RPE, as well as
Lamin B2, and Glucose-6-Phosphate Dehydrogenase.

e Comparison of our data to the data sets of other labs to map replication origins in the human
genome. The data sets from Cadoret et al., 2008; Karnani et al., 2010., and Mesner et al. 2011
were based on using ENCODE (1% of the human genome) for HelLa cells, so finding only a
small amount of overlap could be due to their use of a different cell line than that used by our
lab. Moreover, even when comparing the results between these three data sets, there was not
complete agreement, suggesting lack of saturation of the data. The Martin et al. (2011) data
set used MCF-7 cells and was for the full genome, but did not give full overlap with our data.
They did not show any data for validation of their results, and we suspect that they had
contamination from Okazaki fragments as they selected small nascent strand DNA.

Reportable Outcomes
Our results have been presented at the DOD Era of Hope meeting and the Cold Spring Harbor
DNA Replication meeting (see attached abstracts) and will be written up for publication soon.

(1) Gerbi SA, Foulk, M, Brodsky A and Raphael B (2011). Origins of DNA Replication and
Amplification in the Breast Cancer Genome. Department of Defense Breast Cancer Research
Program Era of Hope meeting (August 2-5, 2011; Orlando, Florida) p. 69 (poster abstract 48-
8).

(2) Urban J, Foulk M, Casella C and Gerbi SA (2011). Mapping DNA replication origins to the
human genome. Poster presentation at the Cold Spring Harbor Laboratory meeting on
Eukaryotic DNA Replication and Genome Maintenance (September 6-10, 2011; Cold Spring
Harbor, NY).



Conclusion
We are on schedule according to the timetable in our grant application, and are excited by our
results mapping all replication origins in the human genome of MCF-7 breast cancer cells.
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Figure1a: Map of the Myc Locus, showing locations of primer pairs. Primer pair 11 is in front of the
first exon; primer pair 16 is within the second exon, and both show strong origin activity.
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Figure 1b: Origin enrichment in short nascent DNA strand preparations determined by real time
PCR. We found that locus 16 (in the second exon) had more origin activity than locus 11 (before exon
1). Moreover, the 1-2 kb size fraction showed a greater enrichment for origin activity than the 0.5=1
kb size fraction, perhaps due to some contamination by Okazaki fragments in the latter.
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Figure 2: Statistics on MCF-7 Breast Cancer Cell Replication Origin Mapping.
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chr2l 1,021 36,443 6,050 3,050,856 1,350 150,450 126 894 1,020
chr22 762 46,135 16,300 505,230 1,045 B5,206 200 561 761
chrk 916 101,550 47,221 1,276,059 1,113 135,130 298 617 915
chry?

chr# ~slze_armP  ~mappable_si #origins_armf mean_midpolr median_midpt max_midpt_dimin_midpt_di:stdev_midpt_¢ #interdist>me #interdist<me total £ distanc

chrl = = 2019 60,051 18,285 1,253,279 1138 114,380 526 1,492 2018

chr2 1635 56,024 16,309 1,012,652 1,141 597,374 431 1,203 1634

chr3 2041 44,298 8,743 1,004,000 1,018 88,381 484 1,556 2040

chrd 623 79,325 18,231 1,176,197 1159 154,080 155 467 622

chrs B10 57,310 15,150 1,294,000 1,043 112,400 215 594 BOS

chré 877 60,258 21,556 1,187,200 1,022 58,550 270 706 576

chr? 1356 41,549 B,442 519,310 1,063 B89,334 318 1,077 1355

chr8 361 122,020 46,769 1,376,500 1,225 187,720 106 254 360

chrg 382 123,510 62,304 1,713,400 1,218 185,640 121 260 381

chllD 603 64,952 16,838 B96,550 1,198 110,500 170 430 602

chril 620 63,003 28,254 1,025,518 1,393 131,870 165 454 615

chri2 383 50,8594 39,012 1,166,011 1,555 145,500 110 272 382

chrl3 13p not mappable (NNNN)  NA NA NA NA A NA MNA NA NA

chri4 14p not mappable (NNNN)  NA NA NA NA NA NA NA NA NA

chris 15p not mappable (NNNN)  NA NA NA NA NA NA NA NA NA

chrlg 1,648 21,335 6,625 615,340 1,065 55,546 310 1,337 1,647

chrl? 698 31,968 10,406 625,830 1,077 62,246 166 531 697

chrig 152 101,460 53,384 680,340 1,414 121,200 48 103 151

chrlg9 1,101 22,188 B,732 458,350 1,368 39,604 272 B28 1100

chr2i 394 66,678 20,115 1,011,693 1,031 114,690 100 293 393

chr2l 21p not NA NA NA NA NA NA NA NA

chr22 22p not NA NA NA NA MNA MNA NA NA

chr 366 210,170 BB,002 1,610,500 1,416 112 253 365

chry'?
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Figure 3: Inter-Origin distances here are those distances between all potential (or most) origins used
in a population of MCF-7 cells. The max distances in our set may be real, but also may be due to
weak origins within that space, due to deletions/rearrangements in the cancer genome, or other. The
median and mean peak widths both reflect the size of the nascent strands we selected.

— Inter-Origin Distance Statistics =)  [~Nascent-Strand Peak Sizes—

# putative

. Median Mean Min Max Median Mean
origins
53,914 12,116 bp 52,878 bp 887 bp 3’05b0F')886 1,514 bp 1,916 bp

Figure 4: 11,805,186 reads of 42-bp were mapped to human genome build hg18 with Bowtie
(Langmead et al, 2009). Some of the origins called at loci known to have origin activity are shown via
snapshots of the IGV browser. In each, the 2"%3™ rows show read coverage and the individual reads
respectively. Note that in some of the read pile-ups, many reads are not seen in this freeze-frame
(scrolling in the IGV browser is necessary). IGVtools (Robinson et al, 2011) was used to approximate
the fragment coverage (from which single end sequencing reads came) by extending reads to the
average fragment length of 350bp in the direction of the read (top row). Using the Bowtie-mapped
reads, MACS (Zhang et al, 2008) was used to call peaks (called 53,914) by shifting all reads 175bp in
the direction of the read to approximate the center of the average-sized 350bp fragments, then using
the poisson distribution to call pile-ups enriched over the genomic background coverage with p-value
< 0.00001 (--nomodel and --nolambda specified). The 4™ row shows the breadth of the peak while the
5™ (bottom-most) row shows the summit (the bp/point with highest coverage). The summit is our
current approximation for the preferred start site (transition point).
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Figure 4b - DBF4 Locus:
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Figure 4d - B-globin Locus:
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Figure 5: Pictorial representations of DNA replication origin sets

Figure 5a - Gerbi
The current Gerbi Origin 301 are unigue to this set
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this set only)
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Figure 5b - Martin

The Martin Origin Set
contains 1,560 in 44 pilot
ENCODE regions
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\ (39.7%)

“ Unique (found in
this set only)
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Figure 5c - Cadoret

The Cadoret Origin Set
Contains 282 in 44 pilot
ENCODE regions after lift-
Over to hg18 (283 in hg17)
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Figure 5d - Mesner

The Mesner Origin Set
Contains 656 in 44 pilot
ENCODE regions after lift-
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Figure 6: Statistics of replication origin overlap between the Gerbi data set and other data sets

Martin Cadoret Mesner (bubble)

Expect:~5972/93905 Expect: ~26/282 Expect: ~145.6/656
= ~6.36% =~9.2% =~22.2%
Observe: 29624/93905 Observe: 70/282 Observe: 135/656
=~31.55% =~31.55% =20.6%
p-value: <<<10%-20 p-value: 3.77x10"-15 p-value: ~0.83**
Karnani (Lexo) Karnani (BrdU-IP)

e Expect: ~28.5/320 Expect: ~ 70.8{)761
=~8.9% =~9.3%

Observe: 19/320 Observe: 9/761 i
=~5.9% =~1.18%

p-value: ~0.966 p-value: ~1

The Mesner data is not more than random chance probably due to the large size of peaks (~3.5-4.5x
bigger than most other sets). Taking off excess length from each side of the Mesner peaks (assuming
origin is centered) may make the relatively large number of overlapped origins (135) more than
expectation by random chance. Martin’s, Cadoret’s, and Mesner’s sets are represented in our set by
more than random chance, but Karnani’s is not.
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Figure 7: A graph representation of pair-wise direct overlaps for the Gerbi set, the Martin set
(Aladjem), the Cadoret set (Prioleau), and the Mesner set (Hamlin). Nodes are Sets. Weights and
directed edges of same color represent how many origins in the set of that color overlap an origin in

the set being pointed to.

Gerbi lab:
. 53,914 origins, 761 in ENCODE regions 210 encode

. Aladjem lab:
94,081 origins, 1560 in ENCODE regions

Prioleau lab:
283 origins in ENCODE regions

. Hamlin lab:
656 origins in ENCODE regions
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Abstract for the DOD Era of Hope meeting, August 2-5, 2011 (Orlando, FL), # p48-8

“Origins of DNA Replication and Amplification in the Breast Cancer Genome”
Susan A. Gerbi (Presenter), Michael Foulk, Alexander Brodsky and Benjamin Raphael.
Brown University, Providence, Rl 02912

The fidelity of DNA replication is of paramount importance for normal function of a cell. Disregulation
of replication can lead to DNA amplification that is a hallmark of cancer. When oncogenes are
amplified, they promote growth of the cancerous cell. Hence, it is important to understand the
mechanism underlying DNA amplification. We suggest that re-firing of an origin of replication may be
an initiating event in DNA amplification. Our previous research on developmentally regulated DNA
amplification in a model system of the fly Sciara demonstrated that a steroid hormone triggers re-
firing of a DNA replication origin, resulting in DNA amplification. The steroid hormone estrogen has
been implicated in breast cancer progression. Can our previous results in the fly serve as a paradigm
--- can estrogen induce DNA amplification in breast cancer? We want to learn whether binding sites
for the estrogen receptor are located adjacent to origins of DNA amplification in the genome of MCF-7
breast cancer cells. Sites of DNA amplification and sites of binding of the estrogen receptor have
already been identified in the MCF-7 genome. To map the origins of DNA amplification requires that
we map all replication origins in the MCF-7 breast cancer genome. In order to identify origins of
replication, we have made preparations of short nascent strands that will be sequenced using next
generation sequencing technology. In brief, nascent DNA is resistant to lambda-exonuclease
digestion because of the presence of a 5° RNA primer, allowing the parental DNA to be digested while
the nascent DNA is untouched. In a preliminary experiment we were able to enrich (up to 19-fold) for
nascent strands from asynchronously growing MCF-7 cells that were subsequently sequenced by
lllumina. Our data overlapped with 78 of the 283 replication origins identified in HeLa cells by Cadoret
et al. (2008) in the ENCODE region of the human genome. Encouraged by these results, we
optimized the protocol to further enrich for nascent DNA, adding precautions to stabilize the RNA
primer on the nascent DNA. Using the c-Myc origin to assess for enrichment, we have produced
several preparations with substantial enrichment (up to 100-fold). We have sent these nascent
strands for sequencing using Helicos single molecule sequencing and are currently analyzing the
data. We also intend to use Illumina to sequence nascent strands in the near future and compare the
results between the two platforms. Mapping all the replication origins in the MCF-7 genome will allow
us to identify which origins occur at regions of DNA amplification and whether they reside in close
proximity to estrogen receptor binding sites.

(Supported by DOD CDMRP log # BC097936)
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Abstract for the Cold Spring Harbor Laboratory meeting on Eukaryotic DNA Replication and Genome
Maintenance, September 6-10, 2011, Cold Spring Harbor, NY., poster 223.

MAPPING DNA REPLICATION ORIGINS TO THE HUMAN GENOME
John Urban*, Michael Foulk*, Cinzia Casella and Susan A. Gerbi._Brown University BioMed Division,
Providence, Rl 02912 USA (* co-first authors)

We have mapped replication origins in the human genome using next generation sequencing
technology. Asynchronous MCF-7 human breast cancer cells in log phase were used for preparations
of short nascent strands for sequencing on the lllumina platform. Our nascent strand-seq (“NS-Seq”)
protocol is based on our earlier report (AK Bielinsky & SA Gerbi. 1998. Science 279:95-8) that
nascent DNA is resistant to lambda-exonuclease digestion because of the presence of a 5° RNA
primer. This allows the parental DNA to be digested while the nascent DNA is untouched. The
nascent strands were size selected on gels for 1-2 kb, which gave greater origin enrichment than a
0.5-1 kb fraction that may have Okazaki fragment contamination. Using the c-Myc origin to assess for
enrichment, the average of the several preparations used for sequencing had 54-fold enrichment of
nascent strands. Interestingly, in assessing this enrichment at the c-Myc origin, we discovered that
the preferred origin resided in the second exon of the gene while it was previously determined to
reside in the promoter of the gene (in HelLa cells: L Tao et al. 2000. J. Cell Biochem 78:442-57). This
observation was confirmed in our NS-Seq data, suggesting plasticity of origin usage at the c-Myc
gene in different cell types. We identified 53,914 origins in the MCF-7 genome, with a median width of
1.5 kb. Many known replication origins were present in our data set including c-Myc, DHFR, Dbf4,
Lamin B2, beta-Globin and Glucose-6-Phosphate Dehydrogenase. There are varying degrees of
overlap between our dataset and those of others (JC Cadoret. 2008. PNAS 105:15837-42; N Karnani
et al. 2010. Mol Biol Cell 21:393-404; Mesner et al. 2011. Genome Res 21:377-89; MM Martin et al.
2011. Genome Res) as will be discussed.

(Supported by DOD CDMRP log # BC097936)
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